The Shamay Lab

What We Do

The main goal of our lab is to develop novel nanomedicines for personalized cancer drug delivery and informatics solutions to the field of nanomedicine in both research and the clinic to eventually benefit patients.


Research Interests

Topics studied in our lab

Simulation of Drug Nanoassembly


The digital age brought an information revolution with automated data analysis, machine learning and data mining applied to almost every field of research including drug delivery and nanomedicine. Nanoinformatics uses data science and information science to optimize, standardize, and understand the synthesis, characterization, and biological effects of nanomaterials.

Images of VEGFR1 Targeted Cancer Cell

Personalized Cancer Nanomedicine

Precision medicines, personalized medicines, or targeted drugs are so named for their perceived specificity to molecular targets in cellular signaling networks. The activities of precision drugs can be limited by the triggering of adaptive signaling pathways in the treated cells. We wish to develop ways to overcome these limitations with nanomedicine and combination therapy

Automated Text Mining

Literature Data Mining

Humanity has generated an enormous amount of scientific and clinical data in the form of papers, books and patents, which are stored in large databases and used by scientists as grounds for new discoveries. With the rapidly increasing wealth of available information, it has become practically impossible for individual scientists and physicians to perceive what is known and even more difficult, what is unknown in a scientific field. We are developing a path towards navigation, organization and prediction within the many layers of cancer complexity from molecular drug formulations and into personalized combination therapy.

IR783 Stabilized Drug-Nanoparticles

Nano-Combination Therapy

We still have only a very limited understanding of what is an optimal drug combination for certain diseases. And even more difficult is how to formulate drug combinations into nanoparticles. We wish to employ computer science, data mining and machine learning to clarify what are optimal drug combinations in nanomedicine.

Multicellular 3D Tumor Spheroid of Liver Cancer 

Crossing challenging barriers

We have developed a powerful tool in vitro for use in the identification and characterization of matrix penetration  processes in our model system. A major advantage of this development is its improved sensitivity, which allows it to detect subtle dynamic property in dense cellular environments.

Contact Us

Shamay Lab for Computational and Cancer Nanomedicine at the Technion, Haifa, Israel


©2018 by The Shamay Lab. Proudly created with